Ll‘ Journal of Global Optimizationl5: 109-126, 1999. 109
‘\ © 1999Kluwer Academic Publishers. Printed in the Netherlands.

A Geometric Approach to Global Optimization

STEFAN NICKEL and ANITA SCHOBEL
Fachbereich Mathematik, Universitat Kaiserslautern, D-67653 Kaiserslautern, Germany
(e-mail: nickel@mathematik.uni-kl.de)

(Received 10 September 1997; accepted in revised form 21 October 1998)

Abstract. In this paper we consider the problem of optimizing a piecewise-linear objective function
over a non-convex domain. In particular we do not allow the solution to lie in the interior of a
prespecified regio®R. We discuss the geometrical properties of this problems and present algorithms
based on combinatorial arguments. In addition we show how we can construct quite complicated
shaped set® while maintaining the combinatorial properties.
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1. Introduction

The solution of piecewise linear programs has always played a special role in
optimization. In general, piecewise-linearities are often employed to give a more
realistic description of costs than can be achieved by linear terms alone. Also in
worst case analysis piecewise linearity arises naturally. Furthermore, piecewise-
linear programs may be used for approximating convex objective functions by
piecewise linear functions. Such an approximation method including error bound
analysis was proposed by Burkard et al. [1]. In addition, piecewise linear programs
arise in specific branches of operations research, like for example location theory,
where — given a number of existing facilities — a new facility has to be located
so that some objectives are optimized. The objectives are often in the form of
piecewise linear functions due to the fact that typically the sum (or the maximum)
of weighted distances from the existing facilities to the new facility is chosen as a
criterion. Moreover, these distances are often derived from norms with a polyhedral
unit ball. See [4, 14 and 16] for various piecewise linear models in location theory.
For an overview about methods for solving piecewise linear programs the reader is
referred to [5-7], and references therein. As a conclusion it is quite natural also to
look at global optimization problems with piecewise-linearities. In particular, we
are interested in the problem of optimizing a piecewise-linear objective function
over a non-convex domain. These includes problems with reverse convex con-
straints. For more details and an introduction to global optimization the reader
is referred to [10, 11] and references therein. Now we will formally introduce the
model we consider in this paper.
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1.1. THE MODEL

Consider the following piecewise linear optimization probleniRin
(OL) min f(x) ,
xeRn

where f(x) := max{ fi(x), fo(x),..., fxk(x)} and thef;,i = 1,2,...,K are
K different affine linear functions. This is a well-known convex problem and can
efficiently be solved by linear programming methods.

We can also easily introduce a feasibility regiénwhereA is a polyhedral set
with

A=xeR" :hjx)<p;,j=12... L}

Also (OL) with the additional restriction that € A can be formulated as a linear
program and therefore be solved efficiently.

<
hjx)y<p; j=12,...,L

If, however, the feasible regioA cannot be described by linear inequalities, or
is not convex, we are in the area of global optimization. In particular we consider
in this paperA := cl(R" \ R), with R C R". By cl(S) we denote the closure of a
setS. Now the minimization problem (ROL) reads

min f(x) or < min f,
where in{R) denotes the interior oRk. With the help of geometric properties of
this problem we will be able to give algorithms to solve (ROL) for a large class of
possible set®.

The remainder of the paper is organized as follows: First we state geometrical
properties of level curves and level sets. These results are used to derive a combin-
atorial description of the solution setR for (ROL) and convex setR. Section 4
shows how these results can be extended in the plane for more geneRidsts
maintaining the combinatorial character of the solution. The paper ends with some
conclusions and an outview to further research.

2. The concept of cells and level sets

For any sefR C R" let ext(R) denote the extreme points Bfandao R the boundary
of R. Furthermore, letK = {1, 2, ..., K}. Then f(x) can be written a5 (x) =
MmaX.ex{ fi (x)}, where for allk € X

fi :R"—>R
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is an affine linear function and th& are pairwise different. To denote the solution
sets we introduce

t* = mIiR{nn f(x)
t;; = xecrlp]lé"n\R) f(X)
X*={xeR": f(x) =¢"}and
Xy :={x e R": x €int(R) and f (x) = 13}.

By defining cells

C"_{ (xe€R": fi(x)= fi(x),Vke X} if IreR" : fi(x)> f(x), Vke K, k#i
S else

we get a subdivision aR" into not more thank nonempty cells. The set of all
cells is denoted. Some properties a? are summarized in the following lemma.

LEMMA 1. Forthe cellsC;, i € X the following hold:
1. Fori € X we have that eitheC; is a polyhedral set with dimensian or
C,’ - ﬂ
2.0int(C;) = {x e R" : fi(x) > fi(x),Vk € K,k #i}.
3. Uyex G =R’
4. int(C;) Nint(C;) = 0 Vi, j, € X withi # j.

Proof.

ad 1) From the definition of’; it follows thatC; is either empty or a polyhedral
set which is full-dimensional, because in that caseCinté @.

ad 2) Letx e int(C;) and suppose there exists# i such thatf;(x) = fi(x).
As x is in the interior ofC; there exists a ballV := U (x) aroundx such
thatU(x) C int(C;). As f; # fi the hyperplanéd := {x : f;(x) = fi(x)}
separate$/ into two partsU;;, U,, such that for ally € U;} fi(y) > fi(»)
and f;(y) < fi(y) forall y € U,,. This is a contradiction sincg < C;.

ad 3) Take an € R". We then have aninde>such thatf; = max f1, fo, ..., fx}-
If i is uniquex € int(C;) and we are done. Ifis not unique we define

I:={ieX: fi(x)> filx)foralke X}
Then there exists a ball := U (x) aroundx such that

VyeU: fi(y) < filty) forallk ¢ T

Now define for allk, I,k # 1, k,1 € T: gy :=f{y € U : fi(y) = fiy)}
andG as the union of alg;. As theg,, are hyperplaned/ \ G # (. Take
z € U\ G. Then there exists a uniqyes I such that

[i@ < fil)Vk € X\ T andf;(2) < fi()Vk € T,k # J,
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meaning that the cell’; # . As alsof;(x) > fi(x) forall k € X we can
conclude thak € C;.
ad 4) This statement follows directly from 2. O

As the lemma shows, we need only to investigate c€lls# @ and we can
neglect the empty ones. In the following we therefore will assume that all cells
are non-empty. The concept of cells has frequently been used in optimization (see
[19, 3, 9, 16] and references therein). From this literature the following result is
well-known, but restated here for the specific context of this paper.

THEOREM 1. X* is either a whole cell or am-dimensional facet of a cell, €
{0,1,...,n—1}.

Proof. We can solve (OL) by inspecting all cells. For any agllthe optimiza-
tion problem is a linear program of which the feasible set is the polyhedral; set
Therefore the result follows from the well known properties of linear programming
theory. O

The following corollary says, that, for finding one optimal solution it is enough
to look at the extreme points of the cells.

COROLLARY. There always exists a pointe X* with x is the extreme point of
acellC; for an indexi € X.

We define@? as the set of all facets of all cels € C.
Additionally, we define construction hyperplanes

Hij:={x @ filx) = fi(0)}

foralli, j € K withi # j. The set of all construction hyperplanes, denoteddy
constitutes an arrangement of hyperplanes which define a set ofdgeksmilar
to the ones introduced by Edelsbrunner [3]. Note atis a subpartition of?,
i.e. P(CY) C P (H#) (whereP(C?) and P (#) denote the set of points € R”
belonging to a facet of a cell or a construction hyperplane, respectively).

In the 2-dimensional case we have 1-dimensional construction hyperplanes. In
this case we will refer to them as ‘construction lines’.

EXAMPLE 1. We are givenf = max fi, ..., fs}, where f1 = x; + xp — 20,

fo=x1—x2, fa = —x1+x2, fa = —x1—x2+20andfs = %x1+10. In
Figure 1 the two cell partition® and Gy are shown. We can easily comput&

by checking the extreme poinds, a,, az anday of all cellsC € €. By comparison
of the objective values we ge&X* = a4, given by the coordinate€), 10) with

objective value 10.

One more definition is necessary for the paper. #~arR define the level set
L (t) and the level curvé._(r) as

Lot ={x eR": f(x) <1),
L_(t)={xeR": f(x) =1t}
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f(z) = f3(z) o f(z) = filz)
f(z) = fs(z)
*=a asg
f(z) = fa(z) A f(z) = faolz)

Figure 1. lllustration for Example 1. The bold part sho@é. The normal and the bold lines
together constitute.

Note that for any convex functioif, L<(¢) is a closed, convex set, which is
nonempty for alk > r*.

LEMMA 2. Fort > t* we have thabL(r) = L_(¢) and

forr <t* L<(t) = L_(1).

Proof. Fort < t* the result is obvious. Far > ¢* we know that any convex
function f with minimal valuer* is strictly convex on the s¢k € R” : f(x) > t*}
of all non-minimal solutions. That proves the lemma. O

Using level curves and level sets we can reformulate (OL) and (ROL).

THEOREM 2.

(a) r*is the optimal objective value of (OL)
& t* =minft : L_(t) # ¥}

(b) t5 is the optimal objective value of (ROL)
&ty =min{t : L_(t) N A # (}

(¢) In(a)and (b)L_(r) can be replaced by. ()

(d) x is an optimal solution of (ROL) witlf (x) = ¢} if and only if there exists
at € R, such that

L_(t)NOR £ 0 @
and
L<(t) R )

The proof follows easily from the definition of level curves, level sets, and
Lemma 2.
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LEMMA 3. The level curved._(¢) are piecewise linear or©. More specific,
L_(t) N C; always has one of the following shapes:

1. empty
2. the whole cell;, in this case we have that= ¢*
3. anr-dimensional facet of;,r € {0,1,... ,n — 1}

4. the intersection betwedt and a hyperplangd with int(C;) N H #£ @, then it
follows thatt > ¢*

Note that only in Case 2 and Case 4 we can say something about the optimality
of ¢.
Proof.

L.)NCi={xeCi:fx)y=t}={xeC;: fix) =t}
=CNn{xeR": fi(x) =t}
::C,»OH

Case 1f;(x) = const Vx € R". ThenH can either be empty (yielding the first
case) orH = R" yielding thatL_(¢) N C; = C; and f;(x) = const = t. In the
latter case we also have that for ale C; f(x) = f;(x) = t. Sincef is a convex
function, it only can be constant on a full-dimensional set if it is minimal on that
set. Therefore that we can conclude: +* and the whole cell”; is optimal.

Case 2:f;(x) is not a constant function. TheH is a hyperplane iR"” and
L:(t) N C,’ =HnN C,’.

e Ifwe have thatd N C; C aC; thenH is a supporting hyperplane fal; and,

sinceC; is a polyhedral set it follows thal N C; is a facet ofC;.

o If, otherwise,L_(z) N C; € 3C;, we can conclude that i@;) N L_(t) #

@. In this case lelC;" and C;” be the two parts of the cell’; which are

separated by the hyperpla#é. That means, one af;",C; is completely
contained inL< (7). Let C; € L<(¢) and suppose = t*. Consequently,
Cjr C L (t*) = L_(r*) (see Lemma 2), which is a contradiction, because
CFrgHNC, =L_(t)NC,. O

Note that ag’; is convex we have that
x,yeL_()NC;, =Vre[0,1]: ax+A—-NyeL_(t)NC;

COROLLARY. f L_(t)NC; £ W thenL_(r) N dC; # 1.
Proof.As L_(r) N C; # @ there are three possibilities according to Lemma 3.
o If L_(t)NC; = C;,thendC; C L_(¢r) and, consequently,_(z) N dC; # @.
o IfL=()NC,;isafacetofC;thenL_(#) NC; C aC;.
e If there exists a hyperplan® with C; N L_(¢+) = C; N H and intC;) N
L_(t) # ? then supposé._(r) N dC; = @. Then

L_(r) € int(C))
:>L<(t) - Int(C,)
= X" Cint(C))
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which is a contradiction to Theorem 1. O

The following theorem is a consequence of the convexity dbee also [11]
and [8]).

THEOREM 3. If X* C int(R) then we haveX} < R

Proof.Letx € X* and assume that there exist& R” such thaty € X% \ 9R.
Theny ¢ R, yielding thatf(x) < f(y) and therefore we know for all € (0, 1]
that

fOx+ A=y <Af)+A -1 f()
<AMM+A-=-1f()
= f().

This also holds if we chooske such thatix + (1 — A)y € dR, which proves the
theorem. a

An equivalent formulation and some more properties of (OL) and (ROL) can be
found in [20], Section 1.5.

3. Solution for convex forbidden sets ink”

In this section we look at forbidden seRswhich are convex. As we will show in

the following theorem, for these sets there always exists an optimal solution for the
restricted problem, which is in the intersection of the boundarg efith the the
boundary of a celC € C:

THEOREM 4. LetR be a convex seR € R" and X* C int(R). Then there exists
xkh € X% andc € €7 with

Xp €(cNIR) .

Furthermore only intersections witfim(c N9 R) < n — 1 have to be investigated.
Proof.Letx € dRNC;NX% such thate ¢ C°. Letr = f(x). SinceX* C int(R)
we know thatt > ¢*, and consequently (see Lemma 3)

H;:={y eR": fi(y) =1}

is a hyperplane witl._(r) N C; = H; N C;. Now we look at the following two
cases.

Case 1:H; N C; € R. Note that sincer ¢ €? we know thatx € int(H; N C;).
Therefore we can conclude thdtNC; C R, asR is convex,H; a hyperplane, and
x € RN H;. According to the corollary to Lemma 3 there exists L_(r)NaC; C
dR suchthat € X% N (AR N C?), IRNC? # (.
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Case 2H;NC; £ R. Thenthere existse H;NC; withz ¢ Randf(z) = f(x).
That means = f(x) cannot be optimal for the restricted problem since Theorem 3
tells us thatX;, < oR.

Now suppose we have dimnN dR) = n — 1 for ac € @?. This implies that
¢ coincides locally withd R and among: the objective function is linear. Assume
that there is n@’ € C?, ¢ # ¢’ with (¢ N dR) N ¢’ # ¥. Then every level curve
L_ touchingc N dR has to be linear throughoutn dR and thereford._ Z R,
contradicting the optimality condition. It follows that for ane (¢ N dR) to be
optimal there must exist@d # ¢, ¢/ € €% with (c N dR) N ¢’ # @. Since dingc N
¢') < n—1itfollows that dim(¢'NdR) < n— 1 and the result follows by replacing
chyc. O

THEOREMS5. LetR € R” be a convex polyhedron, arid* C int(R). The set of
facets ofR is denoted byF. Then there always exists an optimal solutigne X7,
in the finite set of points

Cand :={A1NAN...NA, A e (FUH), A; #A,fori #j
dim(A;NnA,N...NA,) =0and
3i £ jwith A, € F andA; € #} .

Proof. From Theorem 4 we know that for an optimélwe havex* € (RN H)
for someH € #. Choose a faceF € £ such thatt* € (F N H). Furthermore,
choose an indeksuch that alsa* € 3C; holds. Now we have* € (FNHNC;).
Thereforef = f¢, € F N H N C;, which meansf is linear inF N H N C;. Now
we can conclude from the theory of linear programming that there always exists an
optimal vertexv of the polyhedronF N H N C; with f(v) < f(x*). But forv we
know thatv € H N d R and additionally dintw) = O. a

The next theorem gives a characterization of the optimal solution for all convex
restricted sets. Note that ¥ this result is equivalent to Theorem 4.

THEOREM 6. Let R € R” be convex , and¢* C int(R). Then there always
exists an optimal solution}, € X% such thatv}; is a zero-dimensional intersection
between the boundar§R and a sufficient number of construction hyperplanes
H e #.

Proof. From Theorem 4 we know that there always exists an optimal solution
x% € X% such thate, € 9R N HY for

H'={x eR": f,(x) = f(x)} € #.

If 9R N H* only consists of one single point, we are done. If not, we consider the
following problem (ROL1) on the — 1 dimensional spac# *:

(ROLD min f(x)
sit. x € HY\ (RN HY)
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Note that the optimal solutions of (ROL1) are optimal for (ROL). As the restriction
of f to the linear subspacH?* remains piecewise linear and convex H?! is a
convex set, and

H'={HNH':HeH\HY
={lxeH': fix)=fi(0)}:i#j,i,je(L2...,K}\{a, b}

are the new construction hyperplanes we can apply Theorem 4 again. We con-
clude that there always exists an optimal solutighto (ROL1) (and therefore to
(ROL)) such thatei! € (RN HY N H foraH € #'. Let H = H2N H! with
H? e #¢ according to the definition of¢*. Then we know that

xxte dRN H* N H? with HY, H? € #.

We repeat this argument until we have a numpefrhyperplanes?®, H2,... ,H? €
J€ such that the set

ORNHYN H?...N H?

only consists of one single point, which then is an optimal solution to (ROL).

The following corollary shows how Theorems 4 and 6 can be used to derive an
efficient algorithm for solving (ROL) in the plane. We use the fact tRa€?) C
P (F) sinceH is easier to compute.

COROLLARY. Letn = 2and R < R? be a convex set such thad* < int(R).
Then there always exists an optimal solutigne X% in the finite set of points

Cand = {HN 3R : H € 3 and dimH N dR) = 0}

In the algorithm we first compute the s€tnd and then look for the best
candidate.

ALGORITHM for solving (ROL) in the plane.
Input : fi, fo2, ..., fx, convex ser
Output : X%
0. Cand = 0.
1. ComputeX*. If X* N A # @ then Output X}, := X* N A.
2. Compute#t.
3. Forall H € # computeH NaR. If dim(H NaR) = 0 then

Cand = Cand U {H N OR}
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Figure 2. lllustration for Example 2. The bold points show the set of candidatesoR.

4. Determinetg = MiNpccanal f(P)}.
5. Output: X% = L_(t3) N OR.

The complexity of the above algorithm is dominated by the complexity of Step
3 which isInt O(K?) (wherelnt is the complexity of computing an intersection
point between a line and the boundary of the forbiddenRyetnd the complexity
of Step 4 being OK ®). Overall we have a complexity of O + Int O(K?).

EXAMPLE 2. We use the same objective functigras in Example 1. In addition
we are given a convex s@&t = [—10,14] x [2, 20]. By checking the set of candid-
atesCand we getX’; = (32, 2) with objective valueZ (see Figure 2). In Figure 3
the reduced candidate set based on Theorem 4 is shown.

When applying Theorems 4 and 5 for higher dimensions to derive efficient al-
gorithms a pure enumeration of the set of Candidates is not appropriate. Therefore
combined enumeration and search procedures are suggested. Instead of solving

Pr :minz
st fiv)<z i=12,...,K
xeF

for all facetsF € ¥ it is also possible to restrict the search procedure to linear
subspaces of lower dimensions and solve forAl= H;; = {x : fi(x) = f;(x)}
and all facet € #

Pyr :min f;(x) = ¢;x
st. xeHNF
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Figure 3. lllustration for Example 2. The bold points show the set of candidafes o R.

Which of those alternative solution approaches is more appropriate is dependent
on the input data.

4. Extensions in the plane

In this section we consider more realistic forbidden sets. At first we examine what
happens, if the forbidden set is not connected, and then extend the results to so-
called bumpy sets.

The algorithm of the previous section can easily be modified to accommodate
the case wherg& is the union of pairwise disjoint, convex s&ts, R, ... , R; (i.e.
RiNR; =@fori # j,i, j <L).

In this situation we first solve the unrestricted problem (OL). Then the following
result is an immediate consequence of Theorem 3.

THEOREM 7. LetR = R1URoU...UR; WhereR,NR; =@ fori # j,i,j <L
and R; are convex sets far= 1, ..., L. Then there exists an optimal soluti®f
such that either} ¢ int(R) or there exists somewith X}, € 9R;.

Proof. If X* C int(R), then the convexity of¢* and the assumptions on the
setsR1, Ry, ..., Ry imply that there exists soniesuch thatX* C R;. Hence we
can replaceR by R; and use Theorem 3 to conclude thé < dR;. O

Our results can be extended to other cases of non-convex restricting.sets
If we review the proof of Theorem 4 it becomes apparent that we can apply a
combinatorial algorithm as in the case of convex sets whenever we have only a
finite set of points or® R which can lie in the (relative) interior of linear pieces of
a level curve. Therefore we introduce the concept of bumpy sets, which was first
mentioned in [9] in the area of location theory.
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Figure 4. An example for a bumpy set. The dots mark a set of roots.

DEFINITION 1. A bumpy setR € R? with its set of rootsRoots(R)is any set
which can be constructed by a finite application of the following rules:
1. Any convex seR is a bumpy set. In this cas®oors(R) = @.
2. If Rpis a bumpy set theR = Ro U R; is a bumpy set, if
e conv(R)) € R and
e (dRg) N Ry =: 5 is a one-dimensional, connected, proper curve segment
(i.e. there exists a bijective mappigg: [0, 1] — S)
In this caseRy is called the base oR and R; the bump. The two disjoint
endpoints, r, of s are the new roots aR, i.e.

Roots(R) = RootsRg) U {r1, ro}.

Note that depending on the construction of the bumpy set, the same bumpy set
can have a different set of roots, i.Roors(R) is not uniquely defined. For the
following algorithm, however, any set of roots leads to an optimal solution. For the
running time, the smallest set of roots is preferable.

In Figure 4 and Figure 5 some examples of bumpy sets are shown, and the
following lemmas describe some classes of bumpy sets. Some more applications
of bumpy sets will be shown at the end of this section.

LEMMA 4. Let R be a strictly convex set anft’ a translate ofR, such that
int(RNR') #¥. ThenR = RU R’ is a bumpy set.
Proof. Chooser as base and&’ as bump.
e R is convex and therefore a bumpy set,
e R’is convex and thereforenv(R’) € R U R’ and
e JR N R'is aone-dimensional, connected, proper line segmedRas o R’
consists of only two points (see, e.g. [12]). O
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Figure 5. Another example for a bumpy set. The dots mark a set of roots.

LEMMAS. LetR1, R, be convex sets wittus (RoN R1) # #. ThenR = RgU R,
is a bumpy set.
Proof.If R is convex ittrivially is a bumpy set. If not we define the convex&gt

as the base of the bump. LR, By, ... By be the connected componentsiaf\ Ro.

As R is not convex, we know thaky Z R; and thereforgd Rg) N Ry consists ofL
connected, one-dimensional, proper curve segments. That means we can iteratively
add all bumpsB,, By, ..., By t0 Ro, as we know thatonv(B;) € RoU B, for all
I=1,...,L. 0

As mentioned, we now will extend the algorithm of the previous section to the
case, whereR is a bumpy set. In the following we therefore prove that to find an
optimal solution to (ROL), it again is enough to evaluate a finite candidate set. In
order to do this one more result about the structure of bumpy sets is needed.

LEMMA 6. Let R be a bumpy set andbe a line segment. ¥ € R andinz(s)
touchesi R at a unigue point thenx € Roots(R).

Proof. Induction over the number of bumps.

For a convex seR and a line segment C R we know that the interior of
cannot touchd R from inside at a unique point.

Now take any bumpy set with baseR, and bumpR;. Lets be a line segment
with its interior touchingd R from inside at a unique point, i.e.,C R andinz(s) N
dR = {x}. Now we distinguish three cases:

o If x € 9R1, we know thatx € Roots(Rg) C Roots(R) due to the induction

hypothesis.

e If x € 3Ry N Ry, then by definitionx € dR is one of the (new) roots ak.

o If x € 3R\ Ro thenx € dconv(R,) asconv(R;) C R and therefore we

again have a linear piece touching a convex set from inside at a unique point,
which is a contradiction. O
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The following theorem shows that in order to solve (ROL) witis a bumpy set
it suffices to examine the candidate set of the last section, i.e. the zero-dimensional
intersections between the boundarym®find the construction lineH € # and
additionally, the roots of the bumpy skt

THEOREM 8. Let R € R? be a bumpy set such that* C int(R). Then there
always exists an optimal solutior}, € X in the finite set of points

Candy,mpy = Cand U Roots(R)

Proof. With Theorem 2 we know that; is the optimal value of (ROL) if and
only if L<(t3) € RandL_(t}) N9R # ¥. We also know thaL_(r3) N IR is the
set of optimal solutions. Now take any; € L_(t3) N 0R.

Case 1: There exists an open &ete R? such that we have a unique point
x € U, whereL_(t};) touchesiR, i.e.

i) =L () NARNU.

As the level curvel_(r}) consists of linear pieces (see Lemma 3) we either have
e thatx}, is the endpoint of such a linear piece, in this caes H N dR for
someH e J¢ (see Theorem 4) or
e x} is in the interior of such a linear piece, then, according to Lemma 6,
Xy € Roots(R).
Case 2x7}, is part of a linear piece € L_(t3) N dR. Then, asL<(t}) € R
we know that either there exists a raote s or the endpointsey, x, of s are
in dR (see [20] for more details). In the first case, we note that) = ¢ and
x € Candy,n,, is the candidate point we are looking for. In the latter case we
clearly havef(x1) = f(x2) = t;. At both endpoints, on the other hand, other
construction linesH,, H, € J¢ intersect (as the level curves are piecewise linear
on the cells, see Lemma 3), such that we have, € Candp,y- O

ALGORITHM for solving (ROL) in the plane witlR is a bumpy set.
Input : f1, f2, ..., fx, bumpy seiR

Output : X%

0. Cand = 0.

1. ComputeX*. If X* N A # ¢ then OutputX}, := X* N A.

2. Compute#t.

3a. Forall H € # computeH NoR. Ifdim(H NdR) = 0 then

Cand = Cand U {H N OR}
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Figure 6. lllustration for Example 3. The bold points show the set of candid&teso R plus
the roots of the bump.

3b. Cand = Cand U Roots(R)
4. Determinetg = MiNpecanal f(P)}.
5. Output: X% = L_(t3) N OR.

EXAMPLE 3. We use the same objective functighand forbidden regionk

as in Example 2. In addition we are given a convex Bet= [1, 8] x [0, 2]

as a bump. By checking the extended set of candid@tesi! we get the new
candidateq1, 2) , (8, 2), (1, 1), and(z—gf’, 0) and loose the two former candidates
(136, 2) and (2, 2). By computing the objective function for the candidates we get
X% = {(2,0), (8, 20)} with objective valuel (see Figure 6).

Finally we give two examples for the application of bumpy sets. The first applic-
ation shows that we can solve the restricted problem (ROL) for any simple polygon.
These simple polygons can then be used for approximating more compleR sets
(see [1, 18 and 13] for more details).

LEMMA 7. Any simple polygon is a bumpy set.

Proof. Induction over the number of verticesof the polygon. Fon = 3 we
have a convex triangle which trivially is a bumpy set. Now take any polygon
with more than 3 vertices. Consider a triangulatiorRahto n — 2 triangles (such
a triangulation always exists, see e.g. [12, 17]) and take any triaRglef that
triangulation such thak; has two edges on the boundaryrfDefine R, as bump
andRo := R\ R; as base. Then the triangulation Rf consists oz — 3 triangles,
such that the number of vertices Bf is n — 1. ThereforeRg is a bumpy setR;
is convex and = dR N Ry is a one-dimensional, connected, proper line segment,
since it is the third edge of the triangky. O
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If R is a polygon then the set of roots in the above construction is contained in
the set of vertices of the polygon, i.e.

Roots(R) C {v : v vertex of R},

such that the set of candidates in Step 3b of the algorithm would be
Candyiyeon = Cand U {v : v vertex of R}.

This can be sharpened, as the following lemma shows.

LEMMA 8. LetR be a polygon and leX* < int(R). Then there always exists an
optimal solutionx} € X% in the finite set of points

Cand yo1y0n = Cand U {reflexive vertice

Proof. This lemma can be shown by a special bumpy set construction using only
reflexive vertices as roots. Another possibility is to prove the result along the lines
of Theorem 8. O

Another application is the following. Suppose we want to havaolutions
x*1 x*2 ..., x* to the problem (OL), but have the restriction that these solutions
are not too similar, i.e.

dx*™, x*y > rforallk,l e {1,2,... ,m}, k #1

for a given number € R and a convex distance measudreT his concept has been
used by Brimberg and Wesolowsky [2] in the context of location theory. Then we
can proceed as follows: First we find the best solutithto our problem. Then

we forbid all solutions which are too similar #61, i.e. R* = {x : d(x, x*1) < r}.
Solving that problem we find a solutiorf?> € d R*. Iterating that procedure, to find
x** we solve problem (ROL) with

R-Y=(x:d(x,x")y <rforalll <k-—1}
= R"2U {x : d(x, x* 1) < r}

Then(x*1, ..., x*) is a lexicographic minimal solution to the above problem.

This problem can be solved with our algorithm, if all the sRtsk = 1, ... , m—
1 are bumpy sets. i < 3 Lemma 4 shows that this can be done for any strictly
convex distance functiod in R?. If we also want to have distance functions with
linear pieces, e.d; or /., distances or any kind of gauges we can use Lemma 5 for
m < 3. Form > 3 it can be shown, that the seR$ are bumpy sets, if they do not
have any wholes. Even if they have wholes, Lemma 6 remains true, such that the
algorithm can be adapted to solve the problem.
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5. Conclusions

In this paper we have shown how global optimization problems can be solved using
geometrical methods and combinatorial arguments. This discretization approach
leads to very good results, especially if the original assumptions are weakened,
like in the case of bumpy sets. Moreover, this approach yields numerically stable
and efficient procedures and allows us to easily compute the whole set of optimal
solutions. This has already been successfully done in location theory (see [15, 9]
and references therein). This approach is not only useful for general piecewise
linear problems, but furthermore, it can be extended to arbitrary convex objective
functions using approximation methods, like the ones described in [1]. Therefore
our future work will include the adaption of such approximation methods to (ROL).
Also computational tests and bounding techniques are under consideration.
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