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Abstract. In this paper we consider the problem of optimizing a piecewise-linear objective function
over a non-convex domain. In particular we do not allow the solution to lie in the interior of a
prespecified regionR. We discuss the geometrical properties of this problems and present algorithms
based on combinatorial arguments. In addition we show how we can construct quite complicated
shaped setsR while maintaining the combinatorial properties.
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1. Introduction

The solution of piecewise linear programs has always played a special role in
optimization. In general, piecewise-linearities are often employed to give a more
realistic description of costs than can be achieved by linear terms alone. Also in
worst case analysis piecewise linearity arises naturally. Furthermore, piecewise-
linear programs may be used for approximating convex objective functions by
piecewise linear functions. Such an approximation method including error bound
analysis was proposed by Burkard et al. [1]. In addition, piecewise linear programs
arise in specific branches of operations research, like for example location theory,
where – given a number of existing facilities – a new facility has to be located
so that some objectives are optimized. The objectives are often in the form of
piecewise linear functions due to the fact that typically the sum (or the maximum)
of weighted distances from the existing facilities to the new facility is chosen as a
criterion. Moreover, these distances are often derived from norms with a polyhedral
unit ball. See [4, 14 and 16] for various piecewise linear models in location theory.
For an overview about methods for solving piecewise linear programs the reader is
referred to [5–7], and references therein. As a conclusion it is quite natural also to
look at global optimization problems with piecewise-linearities. In particular, we
are interested in the problem of optimizing a piecewise-linear objective function
over a non-convex domain. These includes problems with reverse convex con-
straints. For more details and an introduction to global optimization the reader
is referred to [10, 11] and references therein. Now we will formally introduce the
model we consider in this paper.
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1.1. THE MODEL

Consider the following piecewise linear optimization problem inRn:

(OL) min
x∈Rn

f (x) ,

wheref (x) := max{f1(x), f2(x), . . . , fK(x)} and thefi, i = 1,2, . . . , K are
K different affine linear functions. This is a well-known convex problem and can
efficiently be solved by linear programming methods.

We can also easily introduce a feasibility regionA, whereA is a polyhedral set
with

A := {x ∈ Rn : hj(x) 6 pj , j = 1,2, . . . , L}.
Also (OL) with the additional restriction thatx ∈ A can be formulated as a linear
program and therefore be solved efficiently.

minz

s.t. fi(x) 6 z i = 1,2, . . . , K

hj(x) 6 pj j = 1,2, . . . , L

If, however, the feasible regionA cannot be described by linear inequalities, or
is not convex, we are in the area of global optimization. In particular we consider
in this paperA := cl(Rn \ R), with R ⊆ Rn. By cl(S) we denote the closure of a
setS. Now the minimization problem (ROL) reads

min
x∈A f (x) or min

x 6∈int(R)
f (x) ,

where int(R) denotes the interior ofR. With the help of geometric properties of
this problem we will be able to give algorithms to solve (ROL) for a large class of
possible setsR.

The remainder of the paper is organized as follows: First we state geometrical
properties of level curves and level sets. These results are used to derive a combin-
atorial description of the solution set inRn for (ROL) and convex setsR. Section 4
shows how these results can be extended in the plane for more general setsR while
maintaining the combinatorial character of the solution. The paper ends with some
conclusions and an outview to further research.

2. The concept of cells and level sets

For any setR ⊆ Rn let ext(R) denote the extreme points ofR and∂R the boundary
of R. Furthermore, letK = {1,2, . . . , K}. Thenf (x) can be written asf (x) =
maxk∈K{fk(x)}, where for allk ∈ K

fk : Rn→ R
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is an affine linear function and thefk are pairwise different. To denote the solution
sets we introduce

t∗ := min
x∈Rn

f (x)

t∗R := min
x∈cl(Rn\R)

f (x)

X∗ := {x ∈ Rn : f (x) = t∗} and

X∗R := {x ∈ Rn : x 6∈ int(R) andf (x) = t∗R}.

By defining cells

Ci :=
{ {x∈Rn : fi(x)>fk(x),∀k∈K} if ∃x∈Rn : fi(x)>fk(x),∀k∈K, k 6= i
∅ else

we get a subdivision ofRn into not more thanK nonempty cells. The set of all
cells is denotedC. Some properties ofC are summarized in the following lemma.

LEMMA 1. For the cellsCi, i ∈K the following hold:
1. For i ∈ K we have that eitherCi is a polyhedral set with dimensionn or
Ci = ∅.

2. int(Ci) = {x ∈ Rn : fi(x) > fk(x),∀k ∈ K, k 6= i}.
3.
⋃
i∈K Ci = Rn

4. int(Ci) ∩ int(Cj ) = ∅ ∀i, j,∈ K with i 6= j .

Proof.
ad 1) From the definition ofCi it follows thatCi is either empty or a polyhedral

set which is full-dimensional, because in that case int(Ci) 6= ∅.
ad 2) Letx ∈ int(Ci) and suppose there existsk 6= i such thatfi(x) = fk(x).

As x is in the interior ofCi there exists a ballU := U(x) aroundx such
thatU(x) ⊆ int(Ci). As fi 6= fk the hyperplaneH := {x : fi(x) = fk(x)}
separatesU into two partsU+H ,U

−
H such that for ally ∈ U+H fi(y) > fk(y)

andfi(y) < fk(y) for all y ∈ U−H . This is a contradiction sinceU ⊆ Ci.
ad 3) Take anx ∈ Rn. We then have an indexi such thatfi = max{f1, f2, . . . , fK}.

If i is unique,x ∈ int(Ci) and we are done. Ifi is not unique we define

4 := {i ∈K : fi(x) > fk(x) for all k ∈ K}
Then there exists a ballU := U(x) aroundx such that

∀y ∈ U : fk(y) < fi(y) for all k 6∈ 4

Now define for allk, l, k 6= l, k, l ∈ 4 : gkl := {y ∈ U : fk(y) = fl(y)}
andG as the union of allgkl. As thegkl are hyperplanes,U \G 6= ∅. Take
z ∈ U \G. Then there exists a uniquej ∈ 4 such that

fj (z) < fk(z)∀k ∈ K \ 4 andfj (z) < fk(z)∀k ∈ 4 , k 6= j,
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meaning that the cellCj 6= ∅. As alsofj (x) > fk(x) for all k ∈ K we can
conclude thatx ∈ Cj .

ad 4) This statement follows directly from 2. 2
As the lemma shows, we need only to investigate cellsCi 6= ∅ and we can

neglect the empty ones. In the following we therefore will assume that all cells
are non-empty. The concept of cells has frequently been used in optimization (see
[19, 3, 9, 16] and references therein). From this literature the following result is
well-known, but restated here for the specific context of this paper.

THEOREM 1. X∗ is either a whole cell or anr-dimensional facet of a cell,r ∈
{0,1, . . . , n− 1}.

Proof.We can solve (OL) by inspecting all cells. For any cellCi the optimiza-
tion problem is a linear program of which the feasible set is the polyhedral setCi.
Therefore the result follows from the well known properties of linear programming
theory. 2

The following corollary says, that, for finding one optimal solution it is enough
to look at the extreme points of the cells.

COROLLARY. There always exists a pointx ∈ X∗ with x is the extreme point of
a cellCi for an indexi ∈K.

We defineC∂ as the set of all facets of all cellsC ∈ C.
Additionally, we define construction hyperplanes

Hij :=
{
x : fi(x) = fj (x)

}
for all i, j ∈K with i 6= j . The set of all construction hyperplanes, denoted byH ,
constitutes an arrangement of hyperplanes which define a set of cellsCH similar
to the ones introduced by Edelsbrunner [3]. Note thatCH is a subpartition ofC,
i.e. P (C∂) ⊆ P (H) (whereP (C∂) andP (H) denote the set of pointsx ∈ Rn
belonging to a facet of a cell or a construction hyperplane, respectively).

In the 2-dimensional case we have 1-dimensional construction hyperplanes. In
this case we will refer to them as ‘construction lines’.

EXAMPLE 1. We are givenf = max{f1, . . . , f5}, wheref1 = x1 + x2 − 20,
f2 = x1 − x2, f3 = −x1 + x2, f4 = −x1 − x2 + 20 andf5 = 1

2x1 + 10. In
Figure 1 the two cell partitionsC andCH are shown. We can easily computeX∗
by checking the extreme pointsa1, a2, a3 anda4 of all cellsC ∈ C. By comparison
of the objective values we getX∗ = a1, given by the coordinates(0,10) with
objective value 10.

One more definition is necessary for the paper. Fort ∈ R define the level set
L6(t) and the level curveL=(t) as

L6(t) = {x ∈ Rn : f (x) 6 t},
L=(t) = {x ∈ Rn : f (x) = t}.
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Figure 1. Illustration for Example 1. The bold part showsC∂ . The normal and the bold lines
together constituteH .

Note that for any convex functionf , L6(t) is a closed, convex set, which is
nonempty for allt > t∗.

LEMMA 2. For t > t∗ we have that∂L6(t) = L=(t) and
for t 6 t∗ L6(t) = L=(t).
Proof. For t 6 t∗ the result is obvious. Fort > t∗ we know that any convex

functionf with minimal valuet∗ is strictly convex on the set{x ∈ Rn : f (x) > t∗}
of all non-minimal solutions. That proves the lemma. 2

Using level curves and level sets we can reformulate (OL) and (ROL).

THEOREM 2.
(a) t∗ is the optimal objective value of (OL)
⇔ t∗ = min{t : L=(t) 6= ∅}

(b) t∗R is the optimal objective value of (ROL)
⇔ t∗R = min{t : L=(t) ∩ A 6= ∅}

(c) In (a) and (b)L=(t) can be replaced byL6(t)
(d) x is an optimal solution of (ROL) withf (x) = t∗R if and only if there exists

a t ∈ R, such that

L=(t) ∩ ∂R 6= ∅ (1)

and

L6(t) ⊆ R (2)

The proof follows easily from the definition of level curves, level sets, and
Lemma 2.
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LEMMA 3. The level curvesL=(t) are piecewise linear onC. More specific,
L=(t) ∩ Ci always has one of the following shapes:
1. empty
2. the whole cellCi, in this case we have thatt = t∗
3. anr-dimensional facet ofCi, r ∈ {0,1, . . . , n− 1}
4. the intersection betweenCi and a hyperplaneH with int(Ci)∩H 6= ∅, then it

follows thatt > t∗

Note that only in Case 2 and Case 4 we can say something about the optimality
of t .

Proof.

L=(t) ∩ Ci = {x ∈ Ci : f (x) = t} = {x ∈ Ci : fi(x) = t}
= Ci ∩ {x ∈ Rn : fi(x) = t}
=: Ci ∩H

Case 1:fi(x) = const ∀x ∈ Rn. ThenH can either be empty (yielding the first
case) orH = Rn yielding thatL=(t) ∩ Ci = Ci andfi(x) = const = t . In the
latter case we also have that for allx ∈ Ci f (x) = fi(x) = t . Sincef is a convex
function, it only can be constant on a full-dimensional set if it is minimal on that
set. Therefore that we can concludet = t∗ and the whole cellCi is optimal.

Case 2:fi(x) is not a constant function. ThenH is a hyperplane inRn and
L=(t) ∩ Ci = H ∩ Ci.
• If we have thatH ∩Ci ⊆ ∂Ci thenH is a supporting hyperplane forCi and,

sinceCi is a polyhedral set it follows thatH ∩ Ci is a facet ofCi.
• If, otherwise,L=(t) ∩ Ci 6⊆ ∂Ci, we can conclude that int(Ci) ∩ L=(t) 6=
∅. In this case letC+i andC−i be the two parts of the cellCi which are
separated by the hyperplaneH . That means, one ofC+i ,C−i is completely
contained inL6(t). Let C+i ⊆ L6(t) and supposet = t∗. Consequently,
C+i ⊆ L6(t∗) = L=(t∗) (see Lemma 2), which is a contradiction, because
C+i 6⊆ H ∩ Ci = L=(t) ∩ Ci . 2

Note that asCi is convex we have that

x, y ∈ L=(t) ∩ Ci H⇒ ∀λ ∈ [0,1] : λx + (1− λ)y ∈ L=(t) ∩ Ci
COROLLARY. If L=(t) ∩ Ci 6= ∅ thenL=(t) ∩ ∂Ci 6= ∅.

Proof.AsL=(t) ∩ Ci 6= ∅ there are three possibilities according to Lemma 3.
• If L=(t)∩Ci = Ci, then∂Ci ⊆ L=(t) and, consequently,L=(t)∩ ∂Ci 6= ∅.
• If L = (t) ∩ Ci is a facet ofCi thenL=(t) ∩ Ci ⊆ ∂Ci.
• If there exists a hyperplaneH with Ci ∩ L=(t) = Ci ∩ H and int(Ci) ∩
L=(t) 6= ∅ then supposeL=(t) ∩ ∂Ci = ∅. Then

L=(t) ⊆ int(Ci)

H⇒L6(t) ⊆ int(Ci)

H⇒X∗ ⊆ int(Ci)
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which is a contradiction to Theorem 1. 2
The following theorem is a consequence of the convexity off (see also [11]

and [8]).

THEOREM 3. If X∗ ⊆ int(R) then we haveX∗R ⊆ ∂R
Proof.Let x ∈ X∗ and assume that there existsy ∈ Rn such thaty ∈ X∗R \ ∂R.

Theny 6∈ R, yielding thatf (x) < f (y) and therefore we know for allλ ∈ (0,1]
that

f (λx + (1− λ)y) 6 λf (x)+ (1− λ)f (y)
< λf (y)+ (1− λ)f (y)
= f (y).

This also holds if we chooseλ such thatλx + (1− λ)y ∈ ∂R, which proves the
theorem. 2

An equivalent formulation and some more properties of (OL) and (ROL) can be
found in [20], Section 1.5.

3. Solution for convex forbidden sets inRn

In this section we look at forbidden setsR which are convex. As we will show in
the following theorem, for these sets there always exists an optimal solution for the
restricted problem, which is in the intersection of the boundary ofR with the the
boundary of a cellC ∈ C:

THEOREM 4. LetR be a convex set,R ⊆ Rn andX∗ ⊆ int(R). Then there exists
x∗R ∈ X∗R andc ∈ C∂ with

x∗R ∈ (c ∩ ∂R) .
Furthermore only intersections withdim(c ∩ ∂R) < n− 1 have to be investigated.

Proof.Letx ∈ ∂R∩Ci∩X∗R such thatx 6∈ C∂ . Let t = f (x). SinceX∗ ⊆ int(R)
we know thatt > t∗, and consequently (see Lemma 3)

Hi := {y ∈ Rn : fi(y) = t}
is a hyperplane withL=(t) ∩ Ci = Hi ∩ Ci. Now we look at the following two
cases.

Case 1:Hi ∩ Ci ⊆ R. Note that sincex 6∈ C∂ we know thatx ∈ int(Hi ∩ Ci).
Therefore we can conclude thatHi∩Ci ⊆ ∂R, asR is convex,Hi a hyperplane, and
x ∈ ∂R∩Hi. According to the corollary to Lemma 3 there existsz ∈ L=(t)∩∂Ci ⊆
∂R such thatz ∈ X∗R ∩ (∂R ∩ C∂), ∂R ∩ C∂ 6= ∅.
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Case 2:Hi∩Ci 6⊆ R. Then there existsz ∈ Hi∩Ci with z 6∈ R andf (z) = f (x).
That meanst = f (x) cannot be optimal for the restricted problem since Theorem 3
tells us thatX∗R ⊆ ∂R.

Now suppose we have dim(c ∩ ∂R) = n − 1 for a c ∈ C∂ . This implies that
c coincides locally with∂R and amongc the objective function is linear. Assume
that there is noc′ ∈ C∂ , c 6= c′ with (c ∩ ∂R) ∩ c′ 6= ∅. Then every level curve
L= touchingc ∩ ∂R has to be linear throughoutc ∩ ∂R and thereforeL= 6⊆ R,
contradicting the optimality condition. It follows that for anx ∈ (c ∩ ∂R) to be
optimal there must exist ac′ 6= c, c′ ∈ C∂ with (c ∩ ∂R) ∩ c′ 6= ∅. Since dim(c ∩
c′) < n−1 it follows that dim(c′ ∩∂R) < n−1 and the result follows by replacing
c by c′. 2
THEOREM 5. LetR ⊆ Rn be a convex polyhedron, andX∗ ⊆ int(R). The set of
facets ofR is denoted byF . Then there always exists an optimal solutionx∗R ∈ X∗R
in the finite set of points

Cand := {A1 ∩ A2 ∩ . . . ∩ An : Ai ∈ (F ∪H), Ai 6= Aj for i 6= j
dim(A1 ∩ A2 ∩ . . . ∩ An) = 0 and

∃i 6= j with Ai ∈ F andAj ∈ H} .
Proof.From Theorem 4 we know that for an optimalx∗ we havex∗ ∈ (∂R∩H)

for someH ∈ H . Choose a facetF ∈ F such thatx∗ ∈ (F ∩ H). Furthermore,
choose an indexi such that alsox∗ ∈ ∂Ci holds. Now we havex∗ ∈ (F ∩H ∩Ci).
Thereforef = fCi ∈ F ∩ H ∩ Ci, which meansf is linear inF ∩ H ∩ Ci. Now
we can conclude from the theory of linear programming that there always exists an
optimal vertexv of the polyhedronF ∩ H ∩ Ci with f (v) 6 f (x∗). But for v we
know thatv ∈ H ∩ ∂R and additionally dim(v) = 0. 2

The next theorem gives a characterization of the optimal solution for all convex
restricted sets. Note that inR2 this result is equivalent to Theorem 4.

THEOREM 6. Let R ⊆ Rn be convex , andX∗ ⊆ int(R). Then there always
exists an optimal solutionx∗R ∈ X∗R such thatx∗R is a zero-dimensional intersection
between the boundary∂R and a sufficient number of construction hyperplanes
H ∈ H .

Proof. From Theorem 4 we know that there always exists an optimal solution
x∗R ∈ X∗R such thatx∗R ∈ ∂R ∩H 1 for

H 1 = {x ∈ Rn : fa(x) = fb(x)} ∈ H .

If ∂R ∩ H 1 only consists of one single point, we are done. If not, we consider the
following problem (ROL1) on then− 1 dimensional spaceH 1:

(ROL1) minf (x)

s.t. x ∈ H 1 \ (R ∩H 1)
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Note that the optimal solutions of (ROL1) are optimal for (ROL). As the restriction
of f to the linear subspaceH 1 remains piecewise linear and convex,R ∩ H 1 is a
convex set, and

H1 = {H ∩H 1 : H ∈ H \H 1}
= {{x ∈ H 1 : fi(x) = fj (x)} : i 6= j, i, j ∈ {1,2, . . . , K} \ {a, b}}

are the new construction hyperplanes we can apply Theorem 4 again. We con-
clude that there always exists an optimal solutionx∗1R to (ROL1) (and therefore to
(ROL)) such thatx∗1R ∈ ∂(R ∩ H 1) ∩ H for aH ∈ H1. LetH = H 2 ∩ H 1 with
H 2 ∈ H according to the definition ofH1. Then we know that

x∗1R ∈ ∂R ∩H 1 ∩H 2 with H 1,H 2 ∈ H .

We repeat this argument until we have a numberz of hyperplanesH 1,H 2, . . . , H z ∈
H such that the set

∂R ∩H 1 ∩H 2 . . . ∩Hz

only consists of one single point, which then is an optimal solution to (ROL).2
The following corollary shows how Theorems 4 and 6 can be used to derive an
efficient algorithm for solving (ROL) in the plane. We use the fact thatP (C∂) ⊆
P (H) sinceH is easier to compute.

COROLLARY. Let n = 2 andR ⊆ R2 be a convex set such thatX∗ ⊆ int(R).
Then there always exists an optimal solutionx∗R ∈ X∗R in the finite set of points

Cand = {H ∩ ∂R : H ∈ H and dim(H ∩ ∂R) = 0}
In the algorithm we first compute the setCand and then look for the best

candidate.

ALGORITHM for solving (ROL) in the plane.

Input : f1, f2, . . . , fK , convex setR

Output : X∗R

0. Cand = ∅.
1. ComputeX∗. If X∗ ∩ A 6= ∅ then Output:X∗R := X∗ ∩ A.

2. ComputeH .

3. For allH ∈ H computeH ∩ ∂R. If dim(H ∩ ∂R) = 0 then

Cand = Cand ∪ {H ∩ ∂R}
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Figure 2. Illustration for Example 2. The bold points show the set of candidatesH ∩ ∂R.

4. DeterminetR = minP∈Cand{f (P )}.
5. Output:X∗R = L=(t∗R) ∩ ∂R.

The complexity of the above algorithm is dominated by the complexity of Step
3 which isInt O(K2) (whereInt is the complexity of computing an intersection
point between a line and the boundary of the forbidden setR) and the complexity
of Step 4 being O(K3). Overall we have a complexity of O(K3)+ Int O(K2).

EXAMPLE 2. We use the same objective functionf as in Example 1. In addition
we are given a convex setR = [−10,14] × [2,20]. By checking the set of candid-
atesCand we getX∗R = (16

3 ,2) with objective value38
3 (see Figure 2). In Figure 3

the reduced candidate set based on Theorem 4 is shown.

When applying Theorems 4 and 5 for higher dimensions to derive efficient al-
gorithms a pure enumeration of the set of Candidates is not appropriate. Therefore
combined enumeration and search procedures are suggested. Instead of solving

PF :minz

s.t. fi(x) 6 z i = 1,2, . . . , K

x ∈ F
for all facetsF ∈ F it is also possible to restrict the search procedure to linear
subspaces of lower dimensions and solve for allH = Hij = {x : fi(x) = fj (x)}
and all facetsF ∈ F

PHF :minfi(x) = cix
s.t. x ∈ H ∩ F
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Figure 3. Illustration for Example 2. The bold points show the set of candidates∂C ∩ ∂R.

Which of those alternative solution approaches is more appropriate is dependent
on the input data.

4. Extensions in the plane

In this section we consider more realistic forbidden sets. At first we examine what
happens, if the forbidden set is not connected, and then extend the results to so-
called bumpy sets.

The algorithm of the previous section can easily be modified to accommodate
the case whereR is the union of pairwise disjoint, convex setsR1, R2, . . . , RL (i.e.
Ri ∩ Rj = ∅ for i 6= j, i, j 6 L).

In this situation we first solve the unrestricted problem (OL). Then the following
result is an immediate consequence of Theorem 3.

THEOREM 7. LetR = R1∪R2∪ . . .∪RL whereRi ∩Rj = ∅ for i 6= j, i, j 6 L
andRi are convex sets fori = 1, . . . , L. Then there exists an optimal solutionx∗R
such that eitherx∗R 6∈ int (R) or there exists somel with X∗R ⊆ ∂Rl.

Proof. If X∗ ⊆ int (R), then the convexity ofX∗ and the assumptions on the
setsR1, R2, . . . , RL imply that there exists somel such thatX∗ ⊆ Rl. Hence we
can replaceR byRl and use Theorem 3 to conclude thatX∗R ⊆ ∂Rl. 2

Our results can be extended to other cases of non-convex restricting setsR.
If we review the proof of Theorem 4 it becomes apparent that we can apply a
combinatorial algorithm as in the case of convex sets whenever we have only a
finite set of points on∂R which can lie in the (relative) interior of linear pieces of
a level curve. Therefore we introduce the concept of bumpy sets, which was first
mentioned in [9] in the area of location theory.
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Figure 4. An example for a bumpy set. The dots mark a set of roots.

DEFINITION 1. A bumpy setR ⊆ R2 with its set of rootsRoots(R)is any set
which can be constructed by a finite application of the following rules:
1. Any convex setR is a bumpy set. In this caseRoots(R) = ∅.
2. If R0 is a bumpy set thenR = R0 ∪ R1 is a bumpy set, if

• conv(R1) ⊆ R and
• (∂R0)∩R1 =: s is a one-dimensional, connected, proper curve segment

(i.e. there exists a bijective mappingφ : [0,1] → S)
In this caseR0 is called the base ofR andR1 the bump. The two disjoint
endpointsr1, r2 of s are the new roots ofR, i.e.

Roots(R) = Roots(R0) ∪ {r1, r2}.

Note that depending on the construction of the bumpy set, the same bumpy set
can have a different set of roots, i.e.Roots(R) is not uniquely defined. For the
following algorithm, however, any set of roots leads to an optimal solution. For the
running time, the smallest set of roots is preferable.

In Figure 4 and Figure 5 some examples of bumpy sets are shown, and the
following lemmas describe some classes of bumpy sets. Some more applications
of bumpy sets will be shown at the end of this section.

LEMMA 4. Let R be a strictly convex set andR′ a translate ofR, such that
int (R ∩ R′) 6= ∅. ThenR = R ∪ R′ is a bumpy set.

Proof.ChooseR as base andR′ as bump.
• R is convex and therefore a bumpy set,
• R′ is convex and thereforeconv(R′) ⊆ R ∪ R′ and
• ∂R ∩ R′ is a one-dimensional, connected, proper line segment as∂R ∩ ∂R′

consists of only two points (see, e.g. [12]). 2
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Figure 5. Another example for a bumpy set. The dots mark a set of roots.

LEMMA 5. LetR1, R2 be convex sets withint (R0∩R1) 6= ∅. ThenR = R0∪R1

is a bumpy set.
Proof.If R is convex it trivially is a bumpy set. If not we define the convex setR0

as the base of the bump. LetB1, B2, . . . BL be the connected components ofR1\R0.
AsR is not convex, we know thatR0 6⊆ R1 and therefore(∂R0)∩R1 consists ofL
connected, one-dimensional, proper curve segments. That means we can iteratively
add all bumpsB1, B2, . . . , BL to R0, as we know thatconv(Bl) ⊆ R0 ∪ Bl for all
l = 1, . . . , L. 2

As mentioned, we now will extend the algorithm of the previous section to the
case, whereR is a bumpy set. In the following we therefore prove that to find an
optimal solution to (ROL), it again is enough to evaluate a finite candidate set. In
order to do this one more result about the structure of bumpy sets is needed.

LEMMA 6. LetR be a bumpy set ands be a line segment. Ifs ⊆ R and int (s)
touches∂R at a unique pointx thenx ∈ Roots(R).

Proof. Induction over the number of bumps.
For a convex setR and a line segments ⊆ R we know that the interior ofs

cannot touch∂R from inside at a unique point.
Now take any bumpy setR with baseR0 and bumpR1. Let s be a line segment

with its interior touching∂R from inside at a unique point, i.e.,s ⊆ R andint (s)∩
∂R = {x}. Now we distinguish three cases:
• If x 6∈ ∂R1, we know thatx ∈ Roots(R0) ⊆ Roots(R) due to the induction

hypothesis.
• If x ∈ ∂R1 ∩ R0, then by definitionx ∈ ∂R is one of the (new) roots ofR.
• If x ∈ ∂R1 \ R0 thenx ∈ ∂conv(R1) asconv(R1) ⊆ R and therefore we

again have a linear piece touching a convex set from inside at a unique point,
which is a contradiction. 2
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The following theorem shows that in order to solve (ROL) withR is a bumpy set
it suffices to examine the candidate set of the last section, i.e. the zero-dimensional
intersections between the boundary ofR and the construction linesH ∈ H and
additionally, the roots of the bumpy setR.

THEOREM 8. Let R ⊆ R2 be a bumpy set such thatX∗ ⊆ int(R). Then there
always exists an optimal solutionx∗R ∈ X∗R in the finite set of points

Candbumpy = Cand ∪ Roots(R)
Proof. With Theorem 2 we know thatt∗R is the optimal value of (ROL) if and

only if L6(t∗R) ⊆ R andL=(t∗R) ∩ ∂R 6= ∅. We also know thatL=(t∗R) ∩ ∂R is the
set of optimal solutions. Now take anyx∗R ∈ L=(t∗R) ∩ ∂R.

Case 1: There exists an open setU ∈ R2 such that we have a unique point
x∗R ∈ U , whereL=(t∗R) touches∂R, i.e.

{x∗R} = L=(t∗R) ∩ ∂R ∩ U.
As the level curveL=(t∗R) consists of linear pieces (see Lemma 3) we either have
• thatx∗R is the endpoint of such a linear piece, in this casex∗R ∈ H ∩ ∂R for

someH ∈ H (see Theorem 4) or
• x∗R is in the interior of such a linear piece, then, according to Lemma 6,
x∗R ∈ Roots(R).

Case 2:x∗R is part of a linear pieces ⊆ L=(t∗R) ∩ ∂R. Then, asL6(t∗R) ⊆ R

we know that either there exists a rootx ∈ s or the endpointsx1, x2 of s are
in ∂R (see [20] for more details). In the first case, we note thatf (x) = t∗R and
x ∈ Candbumpy is the candidate point we are looking for. In the latter case we
clearly havef (x1) = f (x2) = t∗R. At both endpoints, on the other hand, other
construction linesH1,H2 ∈ H intersect (as the level curves are piecewise linear
on the cells, see Lemma 3), such that we havex1, x2 ∈ Candbumpy . 2

ALGORITHM for solving (ROL) in the plane withR is a bumpy set.

Input : f1, f2, . . . , fK , bumpy setR

Output : X∗R

0. Cand = ∅.
1. ComputeX∗. If X∗ ∩ A 6= ∅ then Output:X∗R := X∗ ∩ A.

2. ComputeH .

3a. For allH ∈ H computeH ∩ ∂R. If dim(H ∩ ∂R) = 0 then

Cand = Cand ∪ {H ∩ ∂R}
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Figure 6. Illustration for Example 3. The bold points show the set of candidatesH ∩ ∂R plus
the roots of the bump.

3b. Cand = Cand ∪ Roots(R)
4. DeterminetR = minP∈Cand{f (P )}.
5. Output:X∗R = L=(t∗R) ∩ ∂R.

EXAMPLE 3. We use the same objective functionf and forbidden regionR
as in Example 2. In addition we are given a convex setR1 = [1,8] × [0,2]
as a bump. By checking the extended set of candidatesCand we get the new
candidates(1,2) , (8,2), (1,1), and(20

3 ,0) and loose the two former candidates
(16

3 ,2) and(2,2). By computing the objective function for the candidates we get
X∗R = {(20

3 ,0), (
20
3 ,20)} with objective value40

3 (see Figure 6).

Finally we give two examples for the application of bumpy sets. The first applic-
ation shows that we can solve the restricted problem (ROL) for any simple polygon.
These simple polygons can then be used for approximating more complex setsR

(see [1, 18 and 13] for more details).

LEMMA 7. Any simple polygon is a bumpy set.
Proof. Induction over the number of verticesn of the polygon. Forn = 3 we

have a convex triangle which trivially is a bumpy set. Now take any polygonR

with more than 3 vertices. Consider a triangulation ofR into n− 2 triangles (such
a triangulation always exists, see e.g. [12, 17]) and take any triangleR1 of that
triangulation such thatR1 has two edges on the boundary ofR. DefineR1 as bump
andR0 := R \R1 as base. Then the triangulation ofR0 consists ofn− 3 triangles,
such that the number of vertices ofR0 is n − 1. ThereforeR0 is a bumpy set,R1

is convex ands = ∂R ∩ R1 is a one-dimensional, connected, proper line segment,
since it is the third edge of the triangleR1. 2
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If R is a polygon then the set of roots in the above construction is contained in
the set of vertices of the polygon, i.e.

Roots(R) ⊆ {v : v vertex ofR},
such that the set of candidates in Step 3b of the algorithm would be

Candpolygon = Cand ∪ {v : v vertex ofR}.
This can be sharpened, as the following lemma shows.

LEMMA 8. LetR be a polygon and letX∗ ⊆ int(R). Then there always exists an
optimal solutionx∗R ∈ X∗R in the finite set of points

Candpolygon = Cand ∪ {reflexive vertices}

Proof.This lemma can be shown by a special bumpy set construction using only
reflexive vertices as roots. Another possibility is to prove the result along the lines
of Theorem 8. 2

Another application is the following. Suppose we want to havem solutions
x∗1, x∗2, . . . , x∗m to the problem (OL), but have the restriction that these solutions
are not too similar, i.e.

d(x∗k, x∗l ) > r for all k, l ∈ {1,2, . . . , m}, k 6= l
for a given numberr ∈ R and a convex distance measured. This concept has been
used by Brimberg and Wesolowsky [2] in the context of location theory. Then we
can proceed as follows: First we find the best solutionx∗1 to our problem. Then
we forbid all solutions which are too similar tox∗1, i.e.R1 = {x : d(x, x∗1) 6 r}.
Solving that problem we find a solutionx∗2 ∈ ∂R1. Iterating that procedure, to find
x∗k we solve problem (ROL) with

Rk−1 = {x : d(x, x∗l ) 6 r for all l 6 k − 1}
= Rk−2 ∪ {x : d(x, x∗k−1) 6 r}

Then(x∗1, . . . , x∗m) is a lexicographic minimal solution to the above problem.
This problem can be solved with our algorithm, if all the setsRk, k = 1, . . . , m−

1 are bumpy sets. Ifm 6 3 Lemma 4 shows that this can be done for any strictly
convex distance functiond in R2. If we also want to have distance functions with
linear pieces, e.g.l1 or l∞ distances or any kind of gauges we can use Lemma 5 for
m 6 3. Form > 3 it can be shown, that the setsRk are bumpy sets, if they do not
have any wholes. Even if they have wholes, Lemma 6 remains true, such that the
algorithm can be adapted to solve the problem.
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5. Conclusions

In this paper we have shown how global optimization problems can be solved using
geometrical methods and combinatorial arguments. This discretization approach
leads to very good results, especially if the original assumptions are weakened,
like in the case of bumpy sets. Moreover, this approach yields numerically stable
and efficient procedures and allows us to easily compute the whole set of optimal
solutions. This has already been successfully done in location theory (see [15, 9]
and references therein). This approach is not only useful for general piecewise
linear problems, but furthermore, it can be extended to arbitrary convex objective
functions using approximation methods, like the ones described in [1]. Therefore
our future work will include the adaption of such approximation methods to (ROL).
Also computational tests and bounding techniques are under consideration.
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